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General equations for the theory of ideal plasticity were introduced 
by M. Levy [ 1 1, Levy’s representation of the Tresca-Saint Venant 
condition of plasticity by a single equation appeared to be quite 
cumbrous and was not subjected to a detailed investigation. 

The Mises’ condition of plasticity, when used for a general 
problem, makes it statically indeterminate and its solution involves 
considerable difficulties. 

H. Hencky [2 I solved certain problems and indicated that the 
application of the hypothesis of complete plasticity [3 1 makes axi- 
symmetrical problems statically determinate. 

For an investigation of a space problem, W. Jenne 14 ] used the 
hypothesis of complete plasticity and the Mises’ law of plastic flow, 
Jenne referred all his discussions to an isostatic coordinate system 
(system of principal stresses) and he obtained a set of relationships 
which is applicable to principal stresses and curvatures of isostatic 
curves. In doing this, Jenne ignored all the contradictions which 
would occur if the kinematic phase of the problem were to be considered. 

A.U. Ishlinskii [ 5, 6 1. substantiated the hypothesis of complete 
plasticity by having shown that the relationships for complete plasti- 
city are valid in the case when two out of three maximum shear 
stresses simultaneously reach their limiting value. In other words, 
an edge of Coulomb’s prism corresponds to the state of complete 
plasticity. This prism interprets the Tresca-Saint Venant condition 
of plasticity in a space of the principal stresses ol, 02* a?, The 
same author [‘7 ] developed numerical methods for solution of axi- 
symmetrical problems. In a comparatively recent paper, R. Shield [8 I 
provided a detailed analysis of an axi-symmetrical problem using 
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Tresca-Saint Venant’s conditions of plasticity. He solved a number of 

new problems and supplemented certain solutions in paper [7 I by con- 
structing velocity fields. 

The present paper deals 

general equations of ideal 

tion of plasticity and the 

employed. 
\ 

with development and analysis of the 

plasticity. The Tresca-Saint Venant condi- 

associated law of plastic flow have been 

It is shown that a problem is statically determinate for cases 

when the plastic state of stress corresponds to an edge of Coulomb’s 

prism. 

The general equations of statics of granular media under conditions 

of complete limiting state are also considered in this paper. These 

are the cases when the limiting state of stress corresponds to an 

edge of the surface which interprets the condition of limiting 

equilibrium in the space of principal stresses. It is shown that 

under these conditions the general problem of the statics of granular 

media is statically determinate. 

It should be noted that by the associated flow rule, a flow law 

should be understood, which is regarded as a plastic potential. In 

such a case the work performed by stresses on corresponding incre- 

ments of plastic strains is a minimum and therefore such a develop- 

ment of the theory appears to be most correct and substantiated. 

1. According to the Tresca-Saint Venant yield condition, plastic flow 

may appear when the maximum shear stress reaches a certain constant 

limiting value. 

Obviously for the above condition of plasticity, only two types of 

plastic 

located 

states of stress are possible; namely, the points ui, u2, u3 are 

either on the edges of the prism or on its faces. 

Then for any edge of the prism one of the conditions must be satisfied: 

and for 

5’i = “j = oh. _I- 2k _- (1 .I) 

its faces: 
oi = oj + 2k, Oi>Zk>J, 

~~ = q--k, I- =j \ ‘Jh < “j (1.2) 

The velocities of plastic strains for case (1.1) are determined from 

the condition of incompressibility 

ei + % + E3 = 0 

and from the condition of isotropy, which requires the coincidence of 

the principal axes of velocity tensors for strains and stresses. 

From the accepted flow rule, it inmediately follows for case (1.2) 

that ok = 0. Therefore, the equation which determines velocities of 
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plastic strains, assumes 

Hence, for the second 
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the form: 

Ei + "j = 0 (1.3) 

case, the velocity field for plastic strains 
becomes quite constrained. This leads to a certain generalized state of 
plane strain. 

First consider relationship (1.1). With reference to the Cartesian 

system of coordinates x, y, t, let (,;?,,5 be the directions of principal 
stresses 0 1' "2' 03' 

lhe mutuaf orientation of these axes is defined by the direction 

cosines as indicated in the table 

i I I 
E r) i 

z 11 1% n1 
I ! I 

y l2 m2 nz 
I I I 

2 13 m3 II3 

I Ii 

Then, if 
01 = (J2 = u3 -& 2k (1.4) 

then in derivations that follow, all the quantities having the dimensions 
of stress will be referred to a constant f 2k, thus obtaining 

0, = q1r2 + ogmr2 + q,nlB, . . . (1.5) 
T Xv = a1412 + cJzm1m2 -I- wap,, . . . 

Note that here and everywhere below, wherever it is convenient, the 
analogous expressions for the components: D 
shown. 

y, oz, rXz, ryz etc. are not 

& the basis of (1.41, it follows from (1.5) that 

% = a1 + n12, uy = or + n32, sz = al + n,* 

=:xv = n,n,, ,$z = n,n,, 'czx = n3n31 (1.6) 

One easily obtains: 
ol=5--$, 3 = -$(Q + zy + gz) 

and, therefore, the three relationships among stresses may be obtained: 

Ta=(a5-3+$)(Sy-3+$) Vi 

T,,"=(by-Q+$)(Oz-cT+$) (1.7) 

7,; = (%-B -t- f)(%- 3 + $1 

or 
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Sry’;uz=‘-rx u,-3$$) ( 
~yt%x = ?I~ (JZ - 5 + $) 
?m%y = riyz (3X-- 2 + +, (1.8) 

Also, obviously, there exist re’lationships 

%liTVZ ?zs = (% - 5 + $) (Stt - 5 + $) (2, - 5 +a+) 

(?&z)z + ($z%.+. )’ + (%xQg)2 = %cy~;yr%, (1.9) 

k~sume ni = cos & and substitute relationship (1.6) into the equa- 

tions of equilibrium: 

to obtain: 
aci +?I z-sin2pl $--sin+ coscpz---- 

3Y 
(1.10) 

!!2?.. - sir19 cost a% - sin ?2 cos ?I aY dP3 
,I a3 az L - sinys cosyl aZ = O,... 

whereby 
cos” ?I+ co.9 (?2 + cos2 y3 = 1 (1.11) 

Equation (l.lO), (1.11) for the characteristic surface of the system, 

when represented in the form I/J (x, y, 21, will provide 

Q, f2W - (grad (11>2] = 0 (2.12) 

where 

Since the vector grad rl, is perpendicular to the surface +, it follows 

from the equality Q, = 0, that the direction of the vector [ (cos QI, 

cos 42, cos 4) (which is the same as the direction of the principal 

stress 03)is a characteristic direction. 

From the second relationship (1.12), it follows that 

2 (grad $I . 5)’ - (grad 4)” = 0 

From this, it follows that the directions forming a 4.5' angle with 

the direction of uj are the characteristic directions. 

Hence, the system of equations (l.lO), (1.11) will be always hyper- 

bolic. 

It is easily observed that the characteristic directions coincide with 

the planes of maxims shear stresses. 

Consider again the condition of isotropy; according to this condition 

3, = alZ1a + e2m12 + 23n13, . . . . s,~ = ~~2~1~ -j- e,m,m2 + E3rzln2, . . . (1.13) 

From the condition of incompressibility and from (1.13) for the case 
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when <I = c2 it follows that 

& = El(1 - 3rQ)) Ey = El (1 - 3T’Z22), % = El{1 - 3ns2) 

Exy = - 3wln2, Eyz = - 3E1n2n3, E,, = - 3e,n,n, (1.14) 

From (1.14) and (1.6) it is easy to obtain 

% % El %I %z E ZX -=-= -=-=-=- 
Ux-G by--O a* - a %/ % 7 

(1.15) 
IX 

Investigate further case (1.2). Lt in the dimensionless variables 

Qr-as= 1, 01>53>=2 (1.16) 

Introduce a certain curvilinear orthogonal system of coordinates a, 
p, y. Let the mutual orientation of these axes and the axes [,q, [ at 
each point be defined by the direction cosines, These cosines were given 
in the table above. ‘lhen 

Q~ = c1Zr2 + c2mr2 + 03n12, . . . . T+ = ~~~1~1, + 02mlm2 + 03n1n2, . . . (1.17) 

Make use of (1.16) and (1.17) to obtain 

aa = 52 + Z12 + (03 - 02) n12, . . . . ~~~ = U2 + Co3 - ad nln2 (1.18) 

In an analogous way, from (1.3) and (1.13) obtain 

sa = q (Zr2 - m12), . . . . ~~~ = Ed (Z1Z2 - mmm2), . . . (1.19) 

Consider again the yield condition. Six relationships (1.18) and the 

three relationships between the direction cosines together contain eight 

variables U2, U7, li, ni which can be eliminated. &e can obtain 

expressions 

Q= - $(I --c - c2), r = -+(2 - 3c-3c2+ 2c3) 

where c = CT 7 - a2 and q and r are the second and the third invariants 
of stress deviator tensor, respectively. 

4 = X&3 + S,S, + SJ, - T& - ‘EJu2 - CycrZ 

r = Sa+ + SD+ -I- &TJ - S&J, - ~~~~~~~~~~ 

s, = ua - 5, . . . a = + (Da + ap + a,,: 

By eliminating the quantity c, obtain the desired hl.Levy’s yield con- 
dition 

(44 + 1) (q + 1)” + 27r2 = 0 (1.20) 

By using condition (1.20) as a plastic potential, obtain 

where 

Ea = - A [US, - 54r (Tpy2 - S,S,+$q)], .** 

T a0 = - 2h [L&p - 54r (G& - ~~+)i, . . . 

a = 6 (q + 1) (2q + 1) 

(1.21) 
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Consider the Tresca-Saint Venant yield condition as a limiting con- 
dition. Then, for the case of plane strain, it may be shown that 

(33 = +_(31+ 4 

Hence, a case of plane strain is realized on the face of a prism along 
the line which is equidistant from the edges of this face. 

However, the state of stress as close as desired to the plane strain 
state, may correspond to the edge of the prism. 

Consider an infinitely long cylindrical body in the direction of the 
z-axis and subjected to a loading independent of z * Then this body will 
be in the state of plane strain. Orient the x and y normally to z and 
denote by u and v, the displacements along x- and y-axes, respectively. 
Let L be the body’s contour in the xy-plane. Imagine a new body which 
would be formed by rotation of the contour L about some axis y1 which is 
parallel to the y-axis. Denote by R the distance between these two axes. 
Assume that the loading in the plane on the contour L of the toroidal 
body coincides with the loading on the cylindrical body. Then for the 
toroidal body 

au av 
sx=;iz, % ---&Y -_ 2z-H;II 

Hence for any finite value of radius R, the component c7 = 6 z f 0 and 
the plastic state of stress corresponds to the edge of Goulomb’s prism. 
However, for sufficiently large R the state of stress of the toroidal 
body approaches as closely as desired the state of stress for plane 
strain. 

2. Consider general equations of statics for granular media under the 
condition of the complete limiting state. 

The basic equation representing the state of granular media can be 
written in the form 19 1 

nrax j 7;n / l==k+a,tgp (2.2) 

where r n, a, are the tangential and normal stresses. k and p are constants. 

It can be easily shown that condition (2.1) can be written in the 

form 
Ioi-criI,<2kCOSI,+(cri?,;5j)SiIl?, ijj, i, j = 1, 2, 3 (2.2) 

In the space of principal stress al, u2, o3 condition (2.2) can be 

interpreted by a hexagonal pyramid with a vertex at the point 

;i = $ = 13 = = -kctgp 

All the lateral faces of this pyramid are inclined at the same angle 
with respect to the line or = a2 = u3. 

It is obvious that any one of the lateral faces of this pyramid 
corresponds to the condition of complete limiting state. It is sufficient 
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to consider any two diametrically opposite lateral faces. 

Let ui = u*, then for face A we obtain 

and for face B 

03 = 
[l - sin p 

O1 jIq-&-j - > 
2kcixp 

1 + cos p 

Having used relationships (1.5), we obtain for face A 

sx=p+2 BP+* 
[ * 1 n12, . . . 

:#f = 2 [ep + sp] 72l& j * - - 

where p = ui, and it is easy to arrive at 

3a(l 

p= 3(1 

-sinp)-2kcosp 
-sinp)+2sin p 

(2.3) 

(2.4) 

(2.3) 

The three relationships among stresses can be obtained as 

c 2- (0, WI - -P> (% --PI, =yz - 2-(%--P) (% --P> 

- 2 - (%--P)(Qx -p) czx - 

Or 

~XY~YZ = ‘tzx (5% - p), =yz=rr = axv (0, - p) 

‘zx’xy = ‘jjz (3% - P) 

Also 
=x&z’czx = (5x - P) (%d - P) (% - a) 

(%/%Z )” 

A system of four equations containing four unknowns p, q5i may be ob- 

tained as follows: denote ni = cos 46i; substitute into equations of 

equilibrium the relationship (2.5) and introduce condition (1.11). 'Ihe 

equation of the characteristic surface for this system of equations, 

when represented in the form llf (n,y,z), would provide 

2 

a=w P-6) 

From (2.6) it follows that the directions, forming angles 0 with the 

direction of the third principal stress are the characteristic directions, 

for which 

CosB =-!=1/'/2(1 -sinp), 

For face B we obtain 

Cos Q = -&1/l/,(1 + sinp) 
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Further, consider a general case when 

max{lTCnI--f(Q> =0 (2.7) 

Then the condition of the limiting state can be written in the form 

$1 oi - “j 1 sin 26J < f [$ (oi + aj) - i- (ai + 0j) COS 2W] (i fi, i, j = I, 2,s) (2.8) 

where df/cbn = cot 20. 

It is obvious that in the space of the principal stresses al, u2, u7, 

the condition of limiting equilibrium (2.8) may be interpreted by a 

certain curvilinear hexagonal pyramid, located syrmaetrically with respect 

to the line u1 = u2 = u7. 

Consider two opposite faces of this pyramid and write the condition 

of the complete limiting state in the form 

a1 = 32, -+ ( o1 - 02) sin 20 -& f [+- (ur + D3) - +- /,gr - 03) cos 2w] =: 0 

It is easy to obtain 

cI1 = Q 
II 

+ I ?I I (cos 20 ItI) 
sin2w ’ 

53 = ~ 
rl 

+ I =, I (cm 24 T 1) 
sin 2~ (2.9) 

From (2.3) and (1.51 obtain 

(2.10) 

Inasmuch as j 7 ,J and 1 w]may be expressed in terms of uh, the equa- 

tions of equilibrium, relationships (2.10) and (1.11) lead to a system 

of four equations containing four unknowns u,, and hi, 

Following V.V. Sokolovskii [9 1, introduce a function S for which 

dS = $ - dw 
n, 

Then it is easy to obtain 

do, = ?& 2l%l 
(1 f cos 2w cos 2~~) dS + sin sin 2pr dcp, 

1 
dr,=t2 & cos 2w cos ‘pr cos ‘p2dS - 

I ,$l I 
--sin sin ‘pr cos tp2dy, - ,i:2L p cos ‘pl sin cf2dy, 

‘Ihe differential equation of the characteristic surface $J (x,Y,z) 

of the equations of equilibrium and relationship (1.11) may be represented 

in the form given by (2.6)) where 

2 

a= 1*cos2w 
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Notice that for linear relationship (2.1) 

To substantiate the anticipated attainment of a complete limiting 

state one should draw upon kinematics as is done in the theory of ideal 

plasticity. However, for the statics of granular media the above con- 

siderations have not been sufficiently developed as yet. 

1. Levy, M. ,K Voprosu ob obshchikh uravneniiakh 

voznikaiushchikh v tverdykh plasticheskikh 
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